Light On Color: Illuminate

Light On Color: Illuminate

In the last several Artissima blog posts we have taken a  journey through some of the aspects of color that many of us find challenging to truly understand, and wrap our minds around.

It has been fascinating to tackle the topics of metamerism, spectral reflectance, spectral power, the color rendering index, and color temperature.  I wanted to take a few moments, and summarize what I have learned, and hopefully what you have learned too!

As discussed,  color is a function of light. The color that we  see  is  reflected light waves.   “Visible light is made of seven wavelength groups.  When light hits objects, some of the wavelengths are absorbed and some are reflected, depending on the materials in the object. The reflected wavelengths are what we perceive as the object’s color.”

We recognize four types of Metamerism, the phenomenon of colors seeming  to match under one light source, yet appearing different under another/in a different environment.

Sample metamerism: when two color samples appear to match under a particular light source but do not match under a different light source.   Sample metamerism has to do with differences in each sample object’s spectral reflectance distribution, or its response to light, characterized by the wavelengths that it primarily reflects. It happens because of differences in the objects (or samples) themselves.

Illuminant metamerism:  occurs when the spectral reflectance distributions of the two color samples observed are identical, and are seen under different lights sources with differing spectral power distributions  (SPD, or output of a light source, characterized by its relative strength at each wavelength.  It happens because of the light sources (or illuminants) themselves.

Sample Metamerism occurs as a result of  differences in the reflectivity of the color samples themselves, and Illuminant Metamerism occurs as a result of differences in the output of the light source itself, under which we are viewing the color samples.

Observer metamerism: can occur because of differences in color vision  from one person to the next. The physical act of seeing, that which happens in our eyes and brains when we see an object in whatever light, can alter  our color perception. A common source of observer metamerism is color blindness,  but it occurs with the “normal-seeing”  as well.  What  may be a color match for one observer may not be for another.

Geometric metamerism: The angle, distance or light position from which identical colors are viewed may change the color that we see. The distance between a woman’s eyes is, on average, slightly less than a man’s.  This slightly different angle of stereoscopic viewpoint may be why men and women have been known to perceive colors differently!  Most of us have had the experience of  two samples appearing to match when viewed from one angle, but then not matching when viewed from another angle.

CRI, or The Color Rendering Index is an international measurement scale that measures or  describes how colors are rendered, IE “show up” to our eyes,  under an artificial source of light as compared to daylight. Daylight renders the widest variety of colors, as compared to artificial lighting, which depending on the nature of its light source, can render many or few colors.  The International Commission on Illumination (Abbreviated C.I.E. because of its French name, Commission internationale de l’éclairage)is recognized as the  international authority on light and color.  It defines  CRI/color rendering as the effect of an illuminant on the color appearance of objects by conscious or subconscious comparison with their color appearance under a reference illuminant.

in my own words, the color rendering index describes the  effect of a light source on how the color of an object appears to us.  It is the measurement of how much an object’s color appearance shifts when illuminated by an artificial (other than daylight)  light source compared to the color appearance of the same object when  illuminated by a “reference” light source (daylight), of comparable color temperature.

Color Temperature… refers to the actual color and type of  light emitted by a particular light source. High color temperatures, those over 5,000K (K = Kelvin) are termed cool colors  and are bluish white, while lower color temperatures (2,700–3,000 K) are called warm colors  and are yellowish white through red.  

Thus, color temperature refers to the actual color of light and  CRI refers to the ability of a light source to render color, in comparison to daylight.

The relationship of color temperature to CRI?

The color rendering index can be used as a basis of comparison between light sources only if they have the same color temperature; if they are the same degree Kelvin, and thus the light they emit is the same color.

CCT, or Correlated Color Temperature, also expressed in Kelvin, is a numerical description of a  light’s color appearance,  and describes whether a white light source appears more yellow/gold, or more blue.  CCT can be used as a means of correlating the color of an artificial light source with the color of daylight.

As artists, colorists, visual makers of any kind, and humans upon this earth…we will always come back to our response to color, how it is perceived or rendered through light, its effect on our interior and exterior environments, and upon our hearts, minds and souls, to say nothing of our work. Color, and thus light, are a frame of reference for our physical and emotional  experience as we move through our lives.

I hope these posts have shed some light on the color in your life….and that you walk in beauty…and illumination.

 

Rendering Color II

Rendering Color II

“What is color? No object of itself alone has color.
We know that even the most brightly colored object, if taken into total darkness, loses its color. Therefore, if an object is dependent upon light for color, color must be a property of light.
And so it is.”

Paul Outerbridge, Photographer 1896 – 1958

In the post, “Color Rendering I”  I delved into the nature of color and light…as Paul Outerbridge  says above,  color is a property of light…the color that we see an object as “being”, is in essence, light…the wavelengths of light it reflects, as opposed to absorbs.

In this post, I am seeking to clarify CRI…what does that mean?

CRI, or the Color Rendering Index, is a scale that measures not color, not light, but ” the ability of a light source to reproduce the colors of various objects faithfully in comparison with an ideal or natural light source”.http://en.wikipedia.org/wiki/Color_rendering_index

The ideal or natural light source being daylight, because “it (daylight) displays (1) a great variety of colours, (2) makes it easy to distinguish slight shades of colour, and (3) the colours of objects around us obviously look natural.”P.J. Bouma

The International Commission on Illumination  (which is usually abbreviated C.I.E.  for its French name Commission Internationale de L’Eclairage), the international authority on color, color spaces, light, and illumination, has defined CRI as the  “Effect of an illuminant on the color appearance of objects by conscious or subconscious comparison with their color appearance under a reference illuminant”.

Is the concept and definition of CRI becoming any more clear?

Trying to explain CRI reminds me of trying to translate from one language to another, in a manner that makes the meaning of a phrase in one language, comprehensible in another.  It isn’t enough just to translate the words…the whole meaning, context, and  sense of the phrase must be understood.

How’s this:

  The closer the red of your child’s red beach ball inside, under the light of say, your dining room chandelier, looks to the red the same ball appears to be outside, on the beach, under the sunlight, the higher the CRI is of that dining room chandelier illuminant.  CRI measures the ability of a light source to reveal, render, depict or show color the way daylight would.

Put another way, the color rendering index describes the  effect of a light source on how the color of an object appears to us.  It is the measurement of how much an object’s color appearance shifts when illuminated by an artificial (other than daylight)  light source compared to the color appearance of the same object when  illuminated by a “reference” light source (daylight), of comparable color temperature.

Whoops!  Color Temperature!?!  Suffice it to say, right here, right now, the CRI of a light source can only be determined when it is being compared to a reference illuminant, (natural light/daylight), with the same, or comparable color temperature.  The role of “Correlated Color Temperature”  in CRI will be discussed in a future post.

So…until then chew on the above…and I hope the light bulb goes on for you about what Color Rendering Index is.

May both your days, and nights be illuminated with light sources of the highest CRI!